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ABSTRACT

This report presents a preliminary study of the sensitivity
analysis for dynamic systems with emphasis on its applications to
structural control. Definitions are first given for different
sensitivity functions in the time and the frequency domains. Since
most physical quantities of dynamic systems cannot be expressed in
analytical forms, we introduce an indirect approach to determine
their sensitivity derivatives from the sensitivity equations
derived from governing equations. A direct application of the
sensitivity analysis can be found in the integrated control and
optimization in which design variables and control variables are
treated equally as the system parameters active in optimization.
An extensive review and evaluation of the existing techniques in
this area are given to identify a feasible algorithm for future
improvements. Finally, a new' control algorithm, called
optimization based instant control, is proposed for those systems
subjected to general deterministic or random excitations. Unlike
the conventional algorithm, the optimal control is designed and
implemented according to instant information of the excitations.
The important feature of this approach is that the original optimal
control becomes a problem of static parameter optimization. The
formulation layout makes it possible to apply the newly developed

compound scaling algorithm [20] in optimal structural control.
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1. INTRODUCTION

Sensitivity, as the term suggested, is of concern with the
effects of the variation of the parameters to the system response
and characteristics. This concept was first introduced by
mathematicians to evaluate the behavior of the solutions for
differential equations affected by their coefficients [17]. Early
application of this technique was mainly in the assessment of the
discrepancy between the actual system and its theoretical model.
The situation has drastically changed during last three decades.
Growing interest of the sensitivity analysis has widely expanded to
many research areas. In particular, many sophisticated and
optimization theories have emerged recently from this important
technique.

The optimal design is the approach of searching a set of
system parameters that correspondlfo minimum values of certain
objective functions. The parameter search is guided by the
sensitivity derivatives of those functions, which determine the
steepest gradient directions. How to determine the sensitivity
derivatives, hence, is essential for the optimization. For the
case of static loading, theory has been well developed and research
efforts have been concentrated on the development of more efficient
numerical techniques [18,19,1]. For the case of dynamic loading,
complication arises in the parameter optimization. This is due to
the fact that, in general, a structural response cannot be

expressed in a closed form and many physical variables are time




dependent. It is conceivable that the determination of the
sensitivity derivatives for such a case, if possible, may lead to
a very cumbersome process. Thus, the possibility of calculating
the sensitivity derivatives and the efficiency of numerical
computations become two important issues for the researchers in the
area.

Application of the sensitivity analysis in the control was
first performed by Bode [2], who established different sensitivity
measures in the frequency domain. These sensitivity measures
became very important in the classical control theory. However,
the classical control theory has 1limited applications for
structural system since most of the structures have multiple inputs
and multiple outputs. Structural control, thus, must be pursued
using modern control theory or optimal control theory. The
sensitivity analysis again is playing an increasingly important
role in the modern control theory [é].

Recently, Hale, et al. [7] and Haftka, et al. [6] discussed
the possibility of improving control performance by choosing proper
system parameters. They suggested that the control and parameter
optimization be performed simultaneously in order to achieve the
best control design. Many research works along this line have
shown promise results for the case where the structure is
experience zero or white noise excitations [8,9,13,14]. Very few
have shown their successes for cases otherwise. One of the
objectives of this preliminary research is to evaluate existing

techniques in the integrated control and optimization, and identify




the most feasible approach to be adopted in the future.

It is known that the optimal control theory is established on
the basis of optimization, in which the sensitivity derivatives
play very important roles. However, the conventional optimization
scheme is not necessary if the external excitations are zeros or
white noises. It can be proved that the optimal design for such
cases are corresponding to the solution of the Riccati equation, a
nonlinear ordinary differential equation with closed-form
coefficients [11]. 1In reality, however, most external excitations
applied to structures are not white-noise; thus, the conventional
optimization scheme must be adopted. 1In this report, we propose a
new approach, called optimization based instant control, which is
valid for structures subjected to general excitations. The main
feature of this approach is that one only needs to solve a static
parameter optimization problem since the optimal control problem

can be converted into this form.



2. SENSITIVITY ANALYSIS

2.1 Definitions
Consider a real or complex function F(a) with parameter «.
The sensitivity function at the nominal value a = a° is defined as

5@, @-1)
da

which indicates the rate of change of the function F at the nominal
value a°. The reason of using partial derivative is that, in
general, F also may be function of other parameters, or variables.
This definition only refers to the sensitivity with respect to «a.
Equation (2-1) is also called an absolute sensitivity function.

Now we extend the definition for the sensitivity to the case
of r parameters, indicated by the vector a = (@, ... ]T. The
sensitivity of F(a) is characterized by a sensitivity vector 8 with
the j-th component

_OF(a)
aaj

S,

i | a0 j=1 .7 (2-2)

Apparently, equation (2-2) is identical to equation(2-1) except for
a being a vector.

In a general case where the system response or other
characteristics are described by a vector, say F(a) = {F(a), -,

F,(a)}T, we define an n Xr sensitivity matrix 8. of which
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o j=1,r k=1, n 2-3)

Equation (2-3) represents the sensitivity of the k-th components of
F with respect to the j-th component of parameter vector a.

In the classic control theory, it is useful to employ the
relative sensitivity function in the frequency domain [2]. The
relative sensitivity function is defined as

_ 0 InF(a)

2-4)
3 Ina lawet (

Q
The relativity of this sensitivity function may not be obvious,
unless we rewrite equation (2-4) as

_ 9F(a)/F()

° 2-5
oo/ lese @)

Q

which represents the ratio of the percentage change of function F
to the percentage change of parameter a. The relative sensitivity

function is related to the absolute sensitivity function by

Fay 2-6)

%

Q=S

If F and @ are both vectors, the relative sensitivity is defined by

a rectangular matrix Q with elements

Fi(a)
J

1,-,r;k=1,-,n 2-7)

Ia:a.’ J



2.2 General Rules

It has been seen that a sensitivity functions are the partial
derivatives with respect to a parameter vector. The general rules
thus are basically the rules for the partial derivatives. For the
sake of the completeness, we list these rules in the following:

a. summation rule

F.+F, F, F. -
Sal 2 = Sal + Saz (2 8)
b. product rule
F,F, F F -
S,"* = 8, 'Fy(e)) + F(a)S.’ 2-9)
c. chain rule
F(Fy F, F _
Se © = 8§58, (2-10)

d. quotient rule

F F
FF, S, ) Fy(e)S,*

gl (2-11)
Fle)  Fi(eyp

where a’ is the nominal value. In the above equations, the super-
index indicates the function for which the sensitivity is
calculated, and the sub-index indicates the parameter(s) with
respect to which the sensitivity function is measured. For the

relative sensitivity function, we also have

e. product rule

2-12)




f. quotient rule

QF,/F, - QFl _ QF, (2-13)
g. chain rule
o 0, (2-14)

2.3 Output Sensitivity

It is important to note that the sensitivity functions can be
determined directly from their definitions provided in the last
section. This is not the case for dynamic systems in which the
objective functions, such as state variables, are involved in
differential equations. The objective function is implicitly
given. Therefore, we must look for other alternatives and
determine the sensitivity functions-indirectly.

Consider a system governed by the differential equation

F(y("),---,y(l),y,u,a,t) = 0; (2_15)

y2©0)=y®  j=1,-,n

in which F is a nonlinear function, y(t) an output function and
u(t) an input function. The numbers within the parentheses indicate
the order of the derivatives respect to time t. Our goal is to
calculate the sensitivity functions S, j=0,1,...,n, at the nominal
values o, j=0,1,...n.

Taking derivatives with respect to @, on both sides of

11



differential equation (2-15) results in

) ()]
OF & [ OF & ooy oF

dy® Oa i oy® da p doa ; oa i

ay®

— =0; k:l’...’n; ‘=1’...,r
Gl o ]

(2-16)

Use is made of the fact that input u and initial condition are

independent of parameter vector a. Recognizing that derivatives

with respect to t and a; are exchangeable, we evaluate equation (2-

16) at the nominal value «’, and obtain

oF | om oF , - OF oF

SR L Y S Y N LN

aaj aaj aaj 8aj
57(0)=0; k=1,,n; j=1,-,r

in which

g =9yt

7 da lewee

2-17)

(2-18)

It is interesting to see that the sensitivity equations represent

a time variant linear system in spite of the original governing

equations being nonlinear.

For a special case where the system is governed by a linear

time-invariant differential equation

12



b(@)y® + -+ by(a)y® + by(@)y=u(t);

(2-19)
yP©0)=5; k=1,-,n
The corresponding sensitivity equation is
bS8+ +b SV +bS;= - —2| ay™(a®) -~ | 0y (e °)— | y(a%;
j ®;
® e _ = . =
§;°(0)=0 k=1,-,n; j=1,-,r
where y(a’,t) is the nominal solution of equation (2-19),
(%) = f; ‘(0 t-7)u(t)ds (2-21)

in which h(a%t) is an impulse response function. Equation (2-20)
is identical to the governing equation (2-19) except for the input
term on the right hand side. Solution for equation (2-20) can be

written as a convolution integral; namely,

ab
S;= f h(e®z- t)[ | YO+ 2 | oy P(ad)
®j da;
2-22)

1’...,;-

db, 0 .
+—| 0y (a’,0)]d1 j
o
J
2.4 Trajectory Sensitivity Function
The output sensitivity functions defined above are for the
systems with a single degree of freedom. They can be determined by

solving the high-order ordinary linear differential equation. In

13



theory the same approach can be used for a system with multiple
degrees of freedom. This will be, however, a enormous task in
practice. Nevertheless, the governing equation can be conveniently
written in terms of the state variables. The similar approach then
can be adopted in the determination of the sensitivity functions.

Consider a system govern by the differential equations
i=Fxuta), x()=x* (2-23)

in which x is an nX1state vector, F an nX1lexcitation vector, u an
mX1l input vector, and a an rX1 parameter vector. Taking the
partial derivatives on both sides of equation (2-23) with respect
to ¢; yields

ox - oF ox N oF ox

0. oxda. a’ e 7C
i j j j (2-24)

j=1-r

where JP/dx is an nXn Jacobian matrix,

dF, aFl‘

axl axn
OF = : i i (2-25)
ox

., o,

a‘xl axn J

Again, interchanging the derivatives with respect to the time t and

parameter q@;, and evaluating the above equation at the nominal value

a’, we arrive at




oF

; = _ai . =
§= ol aajl““ £(0)=0

(2-26)

j= 1’...,”

where §; is called the trajectory sensitivity function with respect

to the j-th component of the parameter vector a, and is defined by

_ox _
§;= aaj[“ (2-27)

Equation (2-26) generally is a set of 1linear time variant
differential equations. Since coefficients in the equation contain
nominal solutions x(a’ t), the numerical computation for this
problem would be quite expensive. The situation will be very

different if the system is linear, and represented by

E=Ax+Bu; x=x, (2-28)

in which A and B are matrices containing a. The corresponding

sensitivity equations appear to be linear time-invariant, i.e.,

- a_A o =
§,=A,+ aajI,ox(ao,t), £0)=0 229

Jj= 1,-.,r

2.5 Performance-Index Sensitivity
A linear quadratic regulator is an optimization problem of

determining the optimal control force u(t) by minimizing the

15



performance index

J=G+ fo YLdt (2-30)
where
G=x ’(t,) Sx(2) (2-31)
and
L =xT0) Q) x(®) + u TO R u(?) (2-32)

The constraint for the performance index is given in equation (2-
28). The sensitivity for the performance index is a vector defined

by

aJ -
'r]:a—|“o (2 33)

Taking derivatives of equation (2-30) and evaluating it at the

nominal value o’ yield

T ' T -
a(j)lo] B+ f([ L1TE 2= ) (2-34)

in which § is the trajectory sensitivity vector obtained from
equation (2-26).

Methods of determine other kinds of sensitivity functions,
such as eigenvalue and eigenvector sensitivity functions, can be

found in References [3,4,5,15].
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3. INTEGRATED STRUCTURAL CONTROL AND OPTIMIZATION

Structural design is of an exercise to aim the fulfillment of
safety criteria and economical expenses. For a structural system
under static loadings, it is a common practice to employ the
optimization technique to minimize certain cost function of the
system, such as the strength or stiffness, by varying systenm
parameters in a prescribed range. This problem can be stated as a
linear or nonlinear mathematical program, that minimizes the cost
function J,(a@), where a is the vector of system parameters, with
constraints, h;, < h(a) < h,. Sensitivity derivatives, the
important ingredients in the optimization, can be easily determined
for such a case. When a structural system is excited by dynamic
loadings, however, the fulfillment of the safety criteria and
economical expenses is much more difficult to achieve solely
through the optimization, since eitﬁer the cost function J, or the
constraints may be functions of time t. Attempt has been made to
change the system characteristics, such as the eigenvalues, by
varying damping ratio and stiffness coefficients, such that the
dynamic response can be controlled to meet some specific
requirements ([10,12]. This effort is also known to be passive
control, a limited approach especially when control of overall
performance of the structural system is desired. The reason for
the ineffectiveness of this control is that it only changes the
amount of energy dissipation or the resonance frequencies, but by

no means alternates the effect of the input. In contrast, the
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active control provides a system with external energy, capable of
canceling out parts of the energy due to the external excitation,
keeping its effect on the dynamic response minimum. This method
has been proved to be very efficient. However, experience has
shown that the structural control, in most cases, was carried out
independently from the structural optimization. Possible
improvement in terms of combination of the control and optimization
had long been overlooked, until recent papers [6,7] that drew much
attention in the structural engineer community. These papers
provide a clear evidence that changes of system parameters can
affect control performance significantly. They strongly suggested
that control and optimization should be applied to a structural
system simultaneously in order to achieve the best structural
design.

It is of importance to note that the modern control theory was
established on the basis of the “optimization scheme. As an
example, the linear quadratic optimal control is to minimize the

performance index

J(au) = fo Y(xTQx +u TRu)dt (3-1)
with constraints

% =Ax+Bu; x(0) =x° (3-2)
in which x and u are vectors of state variables and active control
forces, respectively, and Q and R are appropriate weighting
matrices determined according to relative emphasis. Matrix A
contains system parameters @, which in general for a structural

18




system is

0 1
A@=| . (3-3)
-MY(«)K(e) -MY(2)C(c)

where M, C and K are the mass matrix, the damping matrix and the
stiffness matrix, respectively. The dependence of a in the
performance index is due to the constraint which in fact is the
governing equation for the structural system. For optimal control,
optimization is performed on the control variables u with
predetermined system parameters a. In other words, if the
performance index J, and the control forces u are treated as the
system response and the system parameters, respectively, the
control itself is a optimization process. However, the control
variables are wusually not determined by the conventional
optimization approach. Instead, they can be obtained indirectly by
solving a set of nonlinear ordinary differential equations, called

the Riccati equation [11],

P+ATP+PA-PBR'B'P+Q=0 (3-4)
in which P is a matrix attributed to the optimal feed back control

forces

u=-RIBPx (3-5)
Since the Riccati equation contains the coefficients of the
governing equation explicitly, the original optimization is
simplified to a ordinary differential equation problemn.

Many researchers suggested that the integrated structural




control and optimization be pursued by two separate paths
[(8,9,13,14]: the optimal control and the parameter optimization.
In this two-path optimization approach, structural design variable
a and the control variables u are classified as two sets of
parameters to be optimized. The corresponding objective functions
are J,(a) and J.(a,u), respectively. The purpose of the integrated
structural control and optimization is to minimize the total
objective function, J(a,u) = J,(a) + J,(a,u), with respect to a and
u under the conditions that
hy<h(ax)<h,

(3-6)
x =Ax+Bu, x(0)=x,

Instead, the two-path optimization is performed on each sub-
objective function separately. The minimization of J(a,u) with
respect to a only involves J,(a), but-not J(a,u). The algorithm for
this path of optimization is exactly the same for the passive
control. The design variables a are fixed while the J(a,u) is
minimized with respect to u. In this manner, the total objective

function is minimized to

T a7y = "0 (@) + T (0" ) 37

The second part of the minimization usually is achieved by solving
the Riccati equation, which is the main advantage of this approach
as far as the numerical computation is concerned. Since the

coupling of the two sets of parameters is disregarded in each path

20



of optimization, & and u” are not true optimal values, and

J(a",u”) is not the true minimum value. It can be proved that

.

Ja™ut) > ’:‘;‘[J,(a) +J (au)] = J(a"u") (3-8)

Thus, the two-path optimization only 1leads to sub-optimal
solutions.

Salama, et al. [16] proposed an alternative in which the
coupling of the two sets of parameters are taken into account. The
strategy of this optimization can be described by the following

expression
T ) =" 17 () + ™ (o ,0)] = P22 [ ) +J ()] (3-9)

Consider the special case where the control is activated in the
period from zero to infinity. X(t=w) = 0 then is realized.

Recognizing the fact that [11]

min min [« -

g Jlam) =" j; [x"Qx+u™Ruldt = x,"P(a)x, (3-10)
and

u’ = -R'B(a) P(ax)x (3-11)
where matrix P(a) is the solution for the Riccati equation (3-4).

We can rewrite equation (3-9) as

J(a*u*) = “2“ [J (&) + x4 P(c)x,] (3-12)

The right hand of the above equation now is an implicit function of

@. With the imposition of constraints on a, the optimal solution

21



can be determined by using sensitivity analysis. This algorithm
requires the derivatives of matrix P(a), which must be obtained
from the Riccati equation. Since the Riccati equation only can be
solved numerically, calculating of the sensitivity derivatives with
respect to @ can be cumbersome. The detailed discussion of this
method can be found in [16].

The methods stated above have one thing in common: the Riccati
equation being used in the optimal control part. Although solving
the Riccati equation requires sophisticated techniques, this effort
would be still much less than that using the conventional
optimization approach. The value of these methods largely depends
upon the legitimacy of the Riccati equation for specific problems.
In what follows, we will carefully reexamine the conditions for
which the Riccati equation is valid.

We start with the governing equation for a structural system,

¥ =Ax+Bu+HYf, x(0)=x, (3-13)

where f(t) is a vector of external forces. The objective of the
active control design is to minimize the performance index in
equation (3-1). As stated early, equation (3-13) is of the
constraints for the optimal problem. Now we combine equations (2-

1) and (2-13) and form a Lagrange

-14
& =j:’[xTQx«»uTRu—).T(x'—Ax-Bu-Hj)]dt -14)

where A is a vector of Lagrangian multiplier, which in general is
time dependent.
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Taking variation of equation (3-14) results in

b= M7 %7) Sx+ g‘?}dn AT(0) 3x(0) - M2)3(2) (3-15)

where ¥ is the integrand in equation (3-14). The necessary

condition for £ to be minimum is §% = 0, which corresponds to

oF
o 3-16
=~ 0 (3-16)
i+ o0 (3-17)
X
and
Aty =0 (3-18)

The second term on the right hand side of equation (3-15) vanishes
due to the initial condition. Equations (3-16) and (3-17)

constitute a new set differential equations of A,
A = -AA-20x; A@)=0 (3-19)
For a closed-loop control, A(t) is taken to be

A(®) = P)x(2) (3-20)
The corresponding optimal control force can be determined according

to equation (3-16),

u(®) = -R'BTA®D) (3-21)
Substituting it into equation (3-17), we obtain

23



(P+ATP+PA-PBR'BTP+Q)x+PHf=0 (3-22)

Pi)=0 (3-23)

For the special case where f = 0, which usually happens for
parametric excitations or structure-induced excitations, equation
(3-22) reduces to the Riccati equation (3-4). It also can be
proved [11] that the optimal solution for the case in which £ is a
white noise excitation has the same form of equation (3-21), and
corresponding matrix P again can be solved from the Riccati
equation (3-4). Therefor, the necessary condition for the Riccati
equation to be valid for the optimal control is that the additive
external excitation f is either white noise or zero. Since most
excitations applied to the structural systems are not white-noise,
the optimal control cannot be determined from the Riccati equation.
As the consequence, theories presented early for the integrated
control and optimization have limited applications for structural
systems.

Dealing with a structural system subjected to a general
loading, Hale and his colleagues [7] derived the necessary
conditions for optimal control and optimal system parameters by

using variation principle. The objective function they used is

J= j:f [x TQx + u TRu +J () - 2 T())[% - A(e)x - B(w)u - H(ex)f])dt (3-24)

in which J,(a) is the cost function for design variable a. The

24



condition for the minimum J can be obtained by taking variation on

equation (3-24). These conditions are

X = Ax+ Bu + Hf;, x(0)=0 (3-25)
20x+ATA+1=0; At)=0 (3-26)
2Ru+BTX =0 (3-27)

AT(V Ax+V Bu+V Hf)+V W=0 (3-28)

It is of importance to note that the advantage of this approach is
that it directs the solution toward to a single optimal
configuration so that the true optimal design of control forces and
system parameters is achieved. Bearing it in mind that matrices a,
B and H are functions of parameter «, the above equations are
coupled in a and u. It is almost impossible to solve thenm
simultaneously for analytical solli'tions. Therefore, numerical
computations are necessary to search the optimal solutions.
Several computational technique are available to solve equations
(3-25) through (3-28) [7]. They appeared to be very time
consuming. In addition, they have not been fully evaluated in

terms of the rate of convergence.
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4. OPTIMIZATION BASED INSTANT OPTIMAL CONTROL

As mentioned before, the theory of the optimization is well
developed along with some standard optimization algorithms.
However, increasing applications of large scale structures in the
modern time demand further developments toward to the efficiency of
optimization techniques. Recent advances shows that there have
been great achievements in such a mission. One of important
developments in‘optimization algorithm attributes to a recent work
by Venkayya [20], who developed a so-called compound scaling
algorithm, which has been proved to be very efficient for large
scale structures. The objective of current research is to extend
this new method to optimal control problem, and possibly to the
integrated control and optimization for active structures. In
what follows, we will propose a new control algorithm in which the
optimal control can be completelymtreated as static parameter
optimization.

The conventional optimal control relying on the Riccati
equation requires that the external excitations either be zero or
white noise. The nature of the excitation, in reality, however, is
random and usually cannot be predicted exactly. Hence, the control
design must depend upon the instant information of the excitation,
and should be implemented instantly. To this end, we formulate an

instant performance index

JO) = x TOQ®) x(®) + u T(t)Bx(P) (“4-1)
Our purpose 1is to minimize J(t) at every time instant with

26



constraints

() = Ax(¢) + Bu() + Hf(0); x(0)=x, (4-2)

For a linear system, it can be proved that over a small time

interval At, the state vector can be written as

() = Td(t-AD) + %[Bu(t) + Hf)] 4-3)

where T is a transformation matrix independent of time t, and d(t-
At) is a vector containing previous information of x(t-At), u(t-At)
and f(t-At). Equation (4-3) is equivalent to equation (4-2), and
again is a constraint for the instant performance index. For the
closed-loop control, the control force is directly related to the

state vector x(t), namely;

u(t) = P(t)x(?) (4-4)
in which P(t) is a control gain matrix. Specific requirement can

be imposed to this control gain by

RIPO1-R,(H) =0 (4-5)

R is a operator which may represent eigenvalues, eigenvectors,
determinant or other properties of matrix P(t). Equation (4-5)
along with equation (4-4) are additional constraints for the
instant performance index.

Equations (4-1) through (4-5) constitute a regular parameter

optimization problem. They can be cast into a Lagrange
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] m ]
&€ =J0-Z1 OX0- Ty OY(0) - Zp OZ) (4-6)

where A\;(t), 7;(t) and g (t) are Lagrangian multipliers corresponding

to the constraints

X(t) = x(8) - Td(t-Ad) - % [Bu(®) + Hft)] <0 @7
Y() = u() - P)x (1) <0 4-8)

and
Z(t) = R[P®)]-Ry(2) <0 (49

In equation (4-6), active variables participating the optimization
are x(t), u(t) and P(t), which can be cast into a gX1 vector «a.

The stationary conditions for the Lagrange are

¢ xX@®H = Y@ » oz
igg@_ = m_zli(t)ﬁ_zYl(t) J(t)-zp.k(t) k(t) =0’
de, Oda, 1 O, 1 de, 1 e, @10)
p= 1’2:"',q

Equation (43) then can be written as the Kuhn-Tucker conditions
e +Bh A+ 4-11
ze,.jxj+?h,.jxj+§gijpj= 1; i=1,2,~,q (4-11)

1

where
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e, =—1 (¢-12)

h.=—1 (4-13)

g;=—_ (4-14)

are ratios of sensitivity derivatives, which can be determined
using the methods in Chapter 2.

It is worthy to note that, at any time instant, equation (4-7)
can be viewed as the conditions éor static equilibrium. The
formulations presented in equations (4-6) through (4-9) constitute
a standard parameter optimization problem at any time instant t,
provided that the optimal solutions =x(t-At) and u(t-At) are
available. This requires that the optimal solution x(t) and u(t)
be obtained within a time period At in order to progressively solve
the problem in a full time scale. The on-line computation must
engage if better accuracy is required. Therefore, the
computational efficiency is essential to the proposed scheme.
Among the existing numerical techniques, the compound scaling

algorithm [20] is the most feasible one for the current
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optimization based instant control. This method was developed by
successfully applying the scaling and resizing techniques in the
optimization procedure. The remarkable feature of this approach is
that, instead of searching the optimum point by point, like the
conventional ones, in the design space, the search sweeps the
design space and approaches the optimum in a fast rate [20].

The optimization based instant optimal control has explicit
superiorities over the conventional optimal control. First, it can
be applied to structural systems under general dynamic loadings.
It is especially useful when the loading is random. Secondarily,
The performance index does not contain integrations or derivatives,
and optimal control is designed for time instant t. Therefore, the
problem is suitable to be treated as regular static structural
optimization. Finally, the optimal control solutions satisfy the
Kuhn-Tucker conditions. The compound scaling algorithm can be

used; so that numerical computation is expected to be very

efficient.
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5. CONCLUDING REMARKS

In this report, we have presented several methods to
indirectly determine sensitivity measures related to structural
controls in the time domain. Upon reviewing the existing
techniques in the area of integrated control and optimization, we
conclude that approaches that relies on the Riccati equation are
limited to the structures subjected to zero additive excitation or
white noise random excitations. True optimal solutions should be
obtained by treating design variables and control variables equally
as the system parameters to be optimized. The sensitivity analysis
obviously should play the key role in this approach. Future
research should concentrate on the development of efficient
computational schemes that can implement the sensitivity analysis
in the integrated control and optimization systematically. Also,
we proposed a new optimal control aiéorithm, capable of converting
a optimal control problem to a static parameter optimization
problem. This new algorithm provides us an opportunity to take the
advantage of recent advances in the optimization area. This method
has potential to be extended to active structures by including
system parameters in the active parameters in optimization. Better
performance of the active structures can be achieved due to the
fact that the structural properties and control variables are
optimized at every time instant. Since this report is prepared for
our preliminary research, many details have not been, touched

thoroughly. Prospective results will be developed in the
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